skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Jinyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many-body interactions are essential for understanding non-linear optics and ultrafast spectroscopy of materials. Recent first principles approaches based on nonequilibrium Green’s function formalisms, such as the time-dependent adiabatic GW (TD-aGW) approach, can predict nonequilibrium dynamics of excited states including electron-hole interactions. However, the high-dimensionality of the electron-hole kernel poses significant computational challenges. Here, we develop a data-driven low-rank approximation for the electron-hole kernel, leveraging localized excitonic effects in the Hilbert space of crystalline systems to achieve significant data compression through singular value decomposition (SVD). We show that the subspace of non-zero singular values remains small even as the k-grid grows, ensuring computational tractability with extremely dense k-grids. This low-rank property enables at least 95% data compression and an order-of-magnitude speedup of TD-aGW calculations. Our approach avoids intensive training processes and eliminates time-accumulated errors, seen in previous approaches, providing a general framework for high-throughput, nonequilibrium simulation of light-driven dynamics in materials. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Atomically thin two-dimensional transition-metal dichalcogenides (2D-TMDs) have emerged as semiconductors for next-generation nanoelectronics. As 2D-TMD-based devices typically utilize metals as the contacts, it is crucial to understand the properties of the 2D-TMD/metal interface, including the characteristics of the Schottky barriers formed at the semiconductor-metal junction. Conventional methods for investigating the Schottky barrier height (SBH) at these interfaces predominantly rely on contact-based electrical measurements with complex gating structures. In this study, we introduce an all-optical approach for non-contact measurement of the SBH, utilizing high-quality WS2/Au heterostructures as a model system. Our approach employs a below-bandgap pump to excite hot carriers from the gold into WS2 with varying thicknesses. By monitoring the resultant carrier density changes within the WS2 layers with a broadband probe, we traced the dynamics and magnitude of charge transfer across the interface. A systematic sweep of the pump wavelength enables us to determine the SBH values and unveil an inverse relationship between the SBH and the thickness of the WS2 layers. First-principles calculations reveal the correlation between the probability of injection and the density of states near the conduction band minimum of WS2. The versatile optical methodology for probing TMD/metal interfaces can shed light on the intricate charge transfer characteristics within various 2D heterostructures, facilitating the development of more efficient and scalable nano-electronic and optoelectronic technologies. 
    more » « less